Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 188(3): 806-817, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854557

RESUMO

Genetic variants are vital in informing clinical phenotypes, aiding physical diagnosis, guiding genetic counseling, understanding the molecular basis of disease, and potentially stimulating drug development. Here we describe two families with an ultrarare ACVR1 gain-of-function pathogenic variant (codon 375, Arginine > Proline; ACVR1R375P ) responsible for a mild nonclassic fibrodysplasia ossificans progressiva (FOP) phenotype. Both families include people with the ultrarare ACVR1R375P variant who exhibit features of FOP while other individuals currently do not express any clinical signs of FOP. Thus, the mild ACVR1R375P variant greatly expands the scope and understanding of this rare disorder.


Assuntos
Miosite Ossificante , Receptores de Ativinas Tipo I/genética , Humanos , Mutação , Miosite Ossificante/diagnóstico , Miosite Ossificante/genética , Miosite Ossificante/patologia , Fenótipo
2.
Am J Med Genet A ; 185(8): 2572-2575, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33973349

RESUMO

Little is known about FOP in Africa and few cases of nonclassic fibrodysplasia ossificans progressiva (FOP) have been reported on the continent. Here we report a three-year-old girl from Angola with a nonclassic FOP clinical presentation that is characterized by complex malformations of the toes and fingers, reduction defects of the digits, absence of nails, progressive heterotopic ossification, and a confirmed heterozygous ACVR1 variant at c.983G > A. Emerging knowledge of FOP can serve as a catalyst for increasing awareness of FOP in under-represented medical communities by achieving a correct FOP diagnosis, improving access of individuals with FOP to clinical trial recruitment, and enhancing the ability of affected individuals to be part of and interact with the international FOP community.


Assuntos
Receptores de Ativinas Tipo I/genética , Alelos , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Miosite Ossificante/diagnóstico , Miosite Ossificante/genética , Substituição de Aminoácidos , Angola , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Genótipo , Heterozigoto , Humanos , Fenótipo , Radiografia
3.
Dev Biol ; 470: 136-146, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217406

RESUMO

The development of joints in the mammalian skeleton depends on the precise regulation of multiple interacting signaling pathways including the bone morphogenetic protein (BMP) pathway, a key regulator of joint development, digit patterning, skeletal growth, and chondrogenesis. Mutations in the BMP receptor ACVR1 cause the rare genetic disease fibrodysplasia ossificans progressiva (FOP) in which extensive and progressive extra-skeletal bone forms in soft connective tissues after birth. These mutations, which enhance BMP-pSmad1/5 pathway activity to induce ectopic bone, also affect skeletal development. FOP can be diagnosed at birth by symmetric, characteristic malformations of the great toes (first digits) that are associated with decreased joint mobility, shortened digit length, and absent, fused, and/or malformed phalanges. To elucidate the role of ACVR1-mediated BMP signaling in digit skeletal development, we used an Acvr1R206H/+;Prrx1-Cre knock-in mouse model that mimics the first digit phenotype of human FOP. We have determined that the effects of increased Acvr1-mediated signaling by the Acvr1R206H mutation are not limited to the first digit but alter BMP signaling, Gdf5+ joint progenitor cell localization, and joint development in a manner that differently affects individual digits during embryogenesis. The Acvr1R206H mutation leads to delayed and disrupted joint specification and cleavage in the digits and alters the development of cartilage and endochondral ossification at sites of joint morphogenesis. These findings demonstrate an important role for ACVR1-mediated BMP signaling in the regulation of joint and skeletal formation, show a direct link between failure to restrict BMP signaling in the digit joint interzone and failure of joint cleavage at the presumptive interzone, and implicate impaired, digit-specific joint development as the proximal cause of digit malformation in FOP.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Articulações/embriologia , Miosite Ossificante/embriologia , Miosite Ossificante/metabolismo , Dedos do Pé/embriologia , Animais , Padronização Corporal , Condrogênese , Modelos Animais de Doenças , Membro Anterior/anormalidades , Membro Anterior/embriologia , Fator 5 de Diferenciação de Crescimento/metabolismo , Lâmina de Crescimento/embriologia , Membro Posterior/anormalidades , Membro Posterior/embriologia , Articulações/anormalidades , Articulações/metabolismo , Camundongos , Osteogênese , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Células-Tronco/fisiologia , Dedos do Pé/anormalidades
4.
Front Cell Dev Biol ; 8: 612853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364240

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder in which extensive heterotopic ossification (HO) begins to form during early childhood and progresses throughout life. Although HO does not occur during embryonic development, children who carry the ACVR1 R206H mutation that causes most cases of FOP characteristically exhibit malformation of their great toes at birth, indicating that the mutation acts during embryonic development to alter skeletal formation. Despite the high prevalence of the great toe malformation in the FOP population, it has received relatively little attention due to its clinically benign nature. In this study, we examined radiographs from a cohort of 41 FOP patients ranging from 2 months to 48 years of age to provide a detailed analysis of the developmental features, progression, and variability of the great toe malformation of FOP, which include absent skeletal structures, malformed epiphyses, ectopic ossification centers, malformed first metatarsals and phalangeal fusion.

5.
Bone ; 140: 115539, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32730934

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder of extraskeletal bone formation, but could appropriately be viewed as a seminal disorder of osteochondrogenesis. Many, if not most, of the musculoskeletal features of FOP are related to dysregulated chondrogenesis including abnormal articular cartilage formation, abnormal diarthrodial joint specification, growth plate dysplasia, osteochondroma formation, heterotopic endochondral ossification (HEO), and precocious arthropathy. In FOP, causative activating mutations of Activin receptor A type I (ACVR1), a bone morphogenetic protein (BMP) type I receptor, are responsible for the osteochondrodysplasia that impacts developmental phenotypes as well as postnatal features of this illustrative disorder. Here, we highlight the myriad developmental and postnatal effects on osteochondrogenesis that emanate directly from mutant ACVR1 and dysregulated bone morphogenetic protein (BMP) signaling in FOP.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Proteínas Morfogenéticas Ósseas , Condrogênese , Humanos , Miosite Ossificante/genética , Ossificação Heterotópica/genética
6.
Bone ; 130: 115116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655222

RESUMO

RATIONALE: Fibrodysplasia ossificans progressiva (FOP) is primarily a disease of progressive heterotopic ossification (HO) leading to impaired mobility throughout life. An additional diagnostic feature is a characteristic malformation of the great toes. The culpable gene for FOP,ACVR1 (activin A receptor type 1) has a clear effect on the induction of extra-skeletal bone formation. However, this bone morphogenetic protein (BMP) pathway receptor is expressed widely throughout skeletal development and has a seminal role in axial and appendicular chondrogenesis, prompting suspicion of widespread bone and joint defects in those with ACVR1 mutations. MATERIALS AND METHODS: We analyzed baseline whole body (minus skull) computed tomographic (CT) scans of 113 individuals with classic clinical features of FOP and the ACVR1 (R206H) mutation who were enrolled in a non-interventional natural history study ((NCT02322255)) for skeletal malformations, atypical morphology, intra-articular synovial osteochondromatosis, developmental arthropathy, and associated degenerative joint phenotypes. Individuals were evaluated in three age groups: 4-13; 14-25; and 25-56 years old, based on historical models of FOP disease progression. RESULTS: We found widespread evidence of developmental arthropathy throughout the axial and appendicular skeleton in all age groups (61M, 52F; ages: 4-56 years). Asymmetric narrowing and subchondral sclerosis were present throughout the joints of the normotopic skeleton and osteophytes were common in the hips and knees of individuals who have FOP in all age groups. The costovertebral joints, intervertebral facet joints, and proximal tibio-fibular joints frequently showed partial or total intra-articular ankylosis, particularly after age 13. The hips of FOP subjects are frequently malformed and dysplastic. We also found evidence of degenerative joint phenotypes after age 13, particularly in the spine, sacro-iliac joints, and lower limbs. CONCLUSIONS: The effects of ACVR1 mutation on the normotopic skeletons of individuals who have FOP extend beyond malformation of the great toes and include both morphological defects and developmental arthropathy. Associated degenerative joint disease occurring at multiple sites starts in adolescence and progresses throughout life. These phenotypes appear to be uncoupled from heterotopic bone formation, indicating a potential role for ACVR1 in the development and progression of degenerative joint disease. SIGNIFICANCE: FOP is a disease of not only progressive heterotopic ossification, but also widespread and extensive developmental arthropathy and associated degenerative joint disease. These findings have relevance for understanding the natural history of FOP and for designing and evaluating clinical trials with emerging therapeutics.


Assuntos
Artropatias , Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Adolescente , Adulto , Proteínas Morfogenéticas Ósseas , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Miosite Ossificante/diagnóstico por imagem , Miosite Ossificante/genética , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/genética , Adulto Jovem
7.
Am J Med Genet A ; 179(7): 1310-1314, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31012264

RESUMO

A 16-year-old girl with a history of nontraumatic swelling of both forearms, osteochondromas of the knees, heterotopic ossification of the neck and back, severe malformations of all digits with hypoplastic or absent nails, alopecia partialis of the scalp, and moderate cognitive impairment was seen for diagnostic evaluation. Whole exome sequencing identified an activating mutation of ACVR1 (c.983G > A; p.Gly328Glu) which confirmed a suspected FOP variant. The delayed diagnosis of an FOP variant in this patient could have been avoided if the significance of severe digital malformations had been recognized, especially in the setting of progressive heterotopic ossification.


Assuntos
Dedos/anormalidades , Mutação , Miosite Ossificante/patologia , Receptores de Ativinas Tipo I/genética , Adolescente , Feminino , Humanos , Miosite Ossificante/genética
8.
Eur J Med Genet ; 60(7): 399-402, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28473268

RESUMO

BACKGROUND: Congenital bilateral hallux valgus with associated absence or fusion of the interphalangeal joint is a classic diagnostic feature of fibrodysplasia ossificans progressiva (FOP), a human genetic disease of extra-skeletal bone formation caused in nearly all cases by a gain-of-function mutation in Activin A Receptor I/Activin-like Kinase 2 (ACVR1/ALK2), which encodes a bone morphogenetic protein (BMP) Type 1 receptor. This toe malformation prompts the suspicion of FOP even before the appearance of extra-skeletal bone. Here we report the case of a four-month-old child who was suspected of having FOP on the basis of a great toe malformation identical to that seen in children with the disease. METHODS: The patient's genomic DNA of the coding region of ACVR1 was sequenced and analyzed for mutations known to cause FOP and novel mutations. Subsequent comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) analyses were performed to detect mutations elsewhere in the genome. RESULTS: Genetic testing exonerated ACVR1 as culpable for the patient's toe malformation. CGH and SNP analyses identified a large intragenic deletion in a different BMP Type 1 receptor gene, BMP Receptor 1B/Activin-like kinase 6 (BMPR1B/ALK6), a gene associated with a variable spectrum of autosomal dominant brachydactyly phenotypes. CONCLUSIONS: This report illustrates that while toe morphology remains the earliest indicator of FOP, toe morphology alone is not an unequivocal clinical diagnostic feature of FOP, and supports that embryonic development of the great toe is highly sensitive to dysregulated signaling from at least two BMP type I receptors.


Assuntos
Miosite Ossificante/genética , Dedos do Pé/anormalidades , Receptores de Ativinas Tipo I/genética , Humanos , Lactente , Masculino , Mutação , Miosite Ossificante/diagnóstico , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...